
DSDISP

Version 3.0

Nakul Chitnis: nakul@math.arizona.edu

James Hyman: jh@lanl.gov

Juan Restrepo: restrepo@math.arizona.edu

Jia Li: li@math.uah.edu

June 8, 2004

Contents

1 Model 2
1.1 Theoretical Development . 2

1.1.1 Introduction . 2
1.1.2 Model Definition . 3
1.1.3 Definition of the rate of infection (λ) 4
1.1.4 Definition of the mixing 6
1.1.5 Linear Analysis . 8
1.1.6 Initialization . 10

1.2 References . 11

2 Code Description 12
2.1 Availability . 12
2.2 Conditions for Use . 12
2.3 Code Documentation . 12
2.4 To Obtain DSDISP code . 12

2.4.1 Linux/UNIX . 12
2.4.2 Windows . 12

2.5 Code Installation . 13
2.5.1 Linux/UNIX . 13
2.5.2 Windows . 13

2.6 System/software Requirements 13

3 Code Operation 13
3.1 Code Structure . 13
3.2 Data Structure . 14
3.3 Initial Conditions . 16
3.4 Input Files . 17

1

3.4.1 sp.in . 17
3.4.2 XTfile . 22
3.4.3 SIfile . 22
3.4.4 MMfile . 24

3.5 Algorithm . 26
3.6 Output . 26

3.6.1 Displayed Results . 26
3.6.2 Saved Results . 28

3.7 Sample Run . 29
3.8 User-Defined Equations . 30
3.9 Killing Execution . 31

4 Bugs and Modifications 31

1 Model

Abstract

In recent years, infectious diseases such as AIDS have greatly grown
in prominence. Also, with the emergence of new diseases like SARS, the
sporadic outbursts of ebola, plague and Creutzfeldt-Jakob disease (CJD)
and the continuing bioterrorist threat of small pox, we require a better un-
derstanding of the spread of infectious diseases. A common way to study
epidemics is to divide the population into three main groups — Suscep-
tible, Infected, and Recovered (known as the SIR model). The entire
population can also be differentiated according to demographic charac-
teristics and the infected group can then be subdivided according to the
stage of infection. Here we present a combined model that contains such
a demographically differentiated population and allows each demographic
group to pass through multiple stages of infection. This model is general
enough to allow for the simulation of different diseases through popula-
tions divided according to various demographic categories, such as age,
behavioural risk or income level. We have written a program in MATLAB
to simulate this model and this program is available for use.

1.1 Theoretical Development

1.1.1 Introduction

To effectively study the spread of infectious diseases, we divide the population
into three main stages — susceptible (S), infected, (I) and recovered (R). We
then divide these stages into various demographic groups. This allows us to
take into account different attributes of people such as general susceptibility,
infectivity, number of contacts, rate of disease progression, death rate and so
on. The possible demographic categories include age, income level, occupation,
number of contacts, etc. We then further subdivide the infected groups into
various infection stages. This allows us to take into account varying infectivity
and death rates at different stages of the diseases. Although not yet included in

2

the model, it would also be possible to model behaviour changes with different
infection stages.

People enter the demographically differentiated susceptible groups at differ-
ent rates through birth and migration. As they get infected, at a rate dependent
on that demographic group, they enter the first infection stage. Then, depending
on the rates of disease progression, they proceed through the remaining infection
stages, before entering the recovered population. From any stage, they leave the
model population at a rate derived from natural death and migration.

This is a good model for viral diseases that confer permanent immunity
after a person has recovered. It is also possible to expand this model, with
user-defined modules, to include diseases with temporary immunity.

1.1.2 Model Definition

DSDISP stands for Differential Susceptibility Differential Infectivity Staged-
Progression. As described in the introduction, we are demographically divid-
ing the population into different groups that progress through various infection
stages. For this model, we will consider n demographic groups and m infection
stages. See Figure 1 for the basic layout of the model. See (1) for the dynamics
of the model and Table 1 for a description of the parameters used in this model.
All parameters except λ are constant in time. We will define λ in §1.1.3.

In the current version of the model, people cannot move between demo-
graphic groups. Once someone enters a certain susceptible group in Figure 1,
(s)he may only move horizontally through the infection stages of that demo-
graphic group. The groups in this model may therefore not be used to represent
locations when the model includes migration between the locations. The groups
can be used to represent locations only if people always return to their home
location. Also, if the groups are used to represent age, the lifespan of the disease
must be significantly shorter than the size of the age groups.

Eventually, we would like to add the ability to move between demographic
categories. We would also like to include multiple strains of disease in a future
version of the model.

dSi(t)

dt
= Λi − (µiS + λi(t))Si(t) (1a)

dIi1(t)

dt
= λi(t)Si(t)− (γi1 + µi1)Ii1(t) (1b)

dIij(t)

dt
= γi,j−1Ii,j−1(t)− (γij + µij)Iij(t) for 2 ≤ j ≤ m (1c)

dRi(t)

dt
= γimIim(t)− µiRRi(t) (1d)

for 1 ≤ i ≤ n.

3

n n1 n2 nm n

2

11m

I22

1211

21

1

2

λ

λ

λn

2

1 γ 1m

γ 2m

γ nm

γ 21

γ n1

µ11 µ12 µ1m µ1Rµ1S

γ 11

2m

Λ

Λ

Λ

1

2

n

S I I I R

R

RI

I

II

I

S

S

Figure 1: Schematic for the DSDISP model with n demographic groups and
m infection stages. People enter different susceptible groups through birth or
migration at different rates dependent on the demographic characteristics of
that group. They get infected at a rate, λ, and then progress through various
infection stages at rates of disease progression, γ, before entering the recovered
state. They leave the population at a rate, µ, through death and migration.

1.1.3 Definition of the rate of infection (λ)

The core of (1) lies in the definition of λi. We define λi as the rate at which the
susceptible population in demographic group i gets infected and progresses to
stage Ii1. We calculate this as the sum of the rate of disease transmission from
each infected subgroup, Ikj for 1 ≤ k ≤ n and 1 ≤ j ≤ m, to the susceptible
group, Si, in (2). This means that a susceptible person in group i can get
infected by an infected person in any group or infection stage.

λi(t) =

n
∑

k=1

m
∑

j=1

λikj(t) (2)

Here, λikj is the rate of disease transmission from the infected people in
subgroup Ikj to the susceptibles in Si. We calculate this in (3) as a product
of the number of contacts, per unit time, that each individual in group i has
with demographic group k; the probability of transmission per contact between
someone in group Ikj and group Si; and the probability that out of all people
in demographic group k, the contact is in infection stage j. See Table 2 for a
summary of the parameters used in this definition.

4

Si(t): The number of susceptibles in demographic group i. Units: People.
Iij(t): The number of infecteds in demographic group i and infection stage j. Units:

People.
Ri(t): The number of recovereds in demographic group i. Units: People.
λi(t): Rate at which susceptibles in demographic group i get infected. Units:

Time−1.
Λi: The inward migration rate for demographic group i. Units: People/Time.
γij : The rate of disease progression for a person in demographic group i and

infection stage j. Units: Time−1.
µiS : = µim + µid. The total loss of population from group Si. Units: Time−1.
µij : = δij + µim + µid. The total loss of population from group Iij . Units:

Time−1.
µiR: = µim + µid. The total loss of population from group Ri. Units: Time−1.
µim: The natural migration rate out of the population for demographic group i.

Units: Time−1.
µid: The natural death rate for demographic group i. Units: Time−1.
δij : The disease induced death rate for demographic group i in infectious stage

j. Units: Time−1.

Table 1: Summary of the parameters in the DSDISP model. All parameters are
nonnegative.

λikj =

Number of
Contacts per
Unit Time

Probability of
Transmission
per Contact

Probability
Contact is
Infected

λikj(t) = (rik(t)) (αiβkj)

(

Ikj(t)

Nk(t)

)

(3)

The term, (rik), gives the average number of contacts made by one person in
demographic group i with all people in demographic group k, as defined in (5).
We explain this term in more detail in §1.1.4. The transmissibility, (αiβkj), is
the probability that someone in Ikj infects a person in Si, given that there is a
contact between Ikj and Si. It is the product of the susceptibility of group Si,
αi, and the infectivity of subgroup Ikj , βkj . The term, (Ikj(t)/Nk(t)), gives the
fraction of individuals in group k who are in infected stage Ikj . The denomina-
tor, Nk(t), is the total population size in demographic group k as in (4). The
product, rikIkj/Nk, gives the average number of contacts between someone in
demographic group i and the infected people in subgroup Ikj . Multiplying that
by the probability of transmission gives the force of infection from subgroup
Ikj to the susceptibles in demographic group i. Summing over all the infection
stages gives the force of infection from all infecteds to the susceptibles in group
i. Multiplying this quantity by the number of susceptibles as in (1) gives the
rate of change of new infecteds in demographic group i.

5

Nk(t) = Sk(t) +

m
∑

j=1

Ikj(t) +Rk(t) (4)

rik(t) = cipik

ckNk(t)
∑n

l=1
clNl(t)

with pik = qikqki (5)

λikj(t): The rate of disease transmission from Ikj to Si. Units: Time−1.
αi: ∈ [0, 1]. The susceptibility of a person in Si. Units: 1.

βkj : ∈ [0, 1]. The infectivity of a person in Ikj . Units: 1.
rik(t): The average number of contacts each person in demographic group i has

with group k per unit time. Units: Time−1.
ci: The preferred number of contacts (per person per time) for people in de-

mographic group i. Units: Time−1.
pik: The probability (or preference) for a contact between group i and group k.

Units: 1.
qik: The desirability of a contact with group k for someone in group i. This can

also be thought of as the acceptability, for contact, of group i for group k.
Units: 1.

Table 2: Summary of parameters in the definition of λ. All parameters are
nonnegative.

Dimensional Analysis:
Let [x] denote the units of x for some variable x.

[αi] = 1

[βkj] = 1

[rik(t)] =
Contacts

Time · Person
=

1

Time

[pik] = 1
[

Ikj(t)

Sk(t) +
∑m

j=1
Ikj(t) +Rk(t)

]

= 1

Therefore,

[λikj(t)] =
1

Time.

1.1.4 Definition of the mixing

The pattern of contacts between different groups plays an essential role in de-
termining the spread of disease, especially in sexually transmitted diseases. We
assume people in each group behave the same way when selecting a partner, but
have biases between groups. In other words, mixing within each group is as-
sumed to be homogeneous but there is heterogeneous mixing among the groups.

6

This mixing between groups is one of the most important factors in modeling
diseases. For sexually transmitted diseases, it depends on the desirability of
an active individual, the acceptability of his/her potential contacts, and the
availability of these potential contacts.

Let qik be the desirability of people in group i to have a contact from group
k; that is, qik is the fraction of people in group k with whom an individual in
group i desires forming a contact. Thus qik describes the desirability of people
in group i to have a contact from group k. It is also the acceptability of people
in group k to people in group i.

Under the condition that enough potential partners are available, the proba-
bility pik that a partnership forms between individuals from group i and group k,
is the product of the availability of group i for group k, qki, and the desirability
of group i for group k, qik, as in (5).

Note that we can also alternatively define pik as the preference for a contact
between group i and group k. With this alternative definition, the pik’s are no
longer restricted to being less than or equal to 1.

We define ci to be the preferred number of social contacts per unit time for
a person in group i. The probability that a contact is with a person from group
k is ckNk/(

∑

l clNl) where Nk is the total population size of group k defined in
(4). This also characterizes the availability of contacts with partners in group k.
Hence, the probability of a partnership forming between individuals from group
i and group k is pikckNk/(

∑

l clNl) (Again, if we think of pik as a preference
then this now becomes a preference of forming partnerships.)

The desirability matrix need not be symmetric (i.e. qik 6= qki, when i 6= k),
but the probability of a partnership forming is symmetric since pik = qikqki

implies pik = pki. Also, we note that there is no constraint on
∑

k qik, which
may be less than or greater than one.

Two special cases of the model (1) with the infection rate, (2) and (3), are
the restricted mixing model when qik = 0 (hence pik = 0, i 6= k) and the
proportional mixing model when qik = 1, for {i, k} = 1, · · · , n .

We denote the number of contacts per unit time of people in group i with
people in group k by Tik. The number of contacts with people in group i
that people in group k have is also Tik, that is Tik = Tki. These are the balance
constraints that need to be satisfied at all times. In multi-group models where an
attempt is made to directly control the number of partnerships formed between
groups, these balance conditions usually are artificially enforced. However, in
the selective mixing model, the balance constraint

Tik = pik

ckNk
∑

l clNl

ciNi = pki

ciNi
∑

l clNl

ckNk = Tki (6)

is automatically satisfied. Thus, by using the acceptability qik or desirability
qki of an individual from group i to an individual from group k as the primary
control variable in these models (instead of the number of partners an individual
from group i desires from group k), the balance constraints become a natural
consequence of the model, rather than an artificially imposed constraint.

7

The number of contacts per individual per unit time in many multi-group
models is assumed to be constant. When all qik’s equal one (proportional mix-
ing), this is also true for the selective mixing model. However, if the mixing is
biased, the actual number of contacts, denoted by ri, for the selective mixing
model will vary in time depending on the combination of desirability, accept-
ability, and availability.

Define P (i) as the probability that an individual in group i finds a partner
from any group. The actual number of contacts per person in group i,

ri = ciP (i) = ci

(

n
∑

k=1

pik

ckNk
∑

l clNl

)

, (7)

reaches its maximum ci only for the proportional mixing, where pik ≡ 1 (i.e.
everyone is acceptable as a partner). Remember that the average number of
contacts per person (7) is the sum over the contacts with each demographic
group, (5).

If the mixing is biased, the acceptability and the availability of partners
must be taken into consideration and a limitation may occur. Then pik ≤ 1,
and hence ri ≤ ci.

However, we think of the pik’s as preferences, then it is possible for the actual
number of contacts per person, ri, to be greater than the preferred number of
contacts, ci.

1.1.5 Linear Analysis

The concept of a threshold condition is very important in epidemiology. The
basic reproductive number, R0, is the expected number of secondary infections
from one infected person in a fully susceptible population during the duration of
the entire infectious period. We are currently working on an analytic formulation
for R0.

However, we can evaluate the stability of the disease-free equilibrium through
linear analysis. The disease-free equilibrium point of (1) is

S∗
i = Λi/µiS (8a)

I∗ij = 0 (8b)

R∗
i = 0. (8c)

with N∗
i = S∗

i +
∑m

j=1
I∗ij + R∗

i . There is a problem here if we have no inward
or outward migration. We look at the four possible cases, for a given group, i,
below.

1. If both Λi and µiS are nonzero, we can use (8) above without any problems.

2. If both, Λi and µiS are zero, the entire subspace, I∗ij = 0 with S∗
i and

R∗
i arbitrary, is a continuum of fixed points. In this case, we define the

disease-free equilibrium to be S∗
i = Ni(0); I∗ij = 0 (which is the only

mathematical requirement for the fixed point); and R∗
i = 0. We perform

8

our linear analysis around the point where there is no recovered population
in that group and the susceptible population is equal to the input initial
total population of that group.

3. If Λi = 0 and µiS 6= 0, the disease-free equilibrium is S∗
i = 0; I∗ij = 0; and

R∗
i = 0.

4. If Λi 6= 0 and µiS = 0, we have no equilibrium point because we have
inflow but no outflow. We do not perform any linear analysis.

It is possible in a multi-group model for a number of the cases above to si-
multaneously occur. If 4 is true for any of the groups, there is no disease-free
equilibrium and we do not conduct any linear analysis. If 2 or 3 are true for any
of the groups, we pick the coordinates of the disease-free equilibrium for those
groups as described above; and continue with the rest as we would with 11.

We calculate the Jacobian of the infecteds from our original system of equa-
tions (1). The first n equations correspond to the demographic groups in the first
infection stage. The next n equations correspond to the demographic groups in
the second infection stage and so on. The resulting Jacobian is (m∗n)×(m∗n).
For our equations, the first n rows of the Jacobian are dense; while the remaining
(m−1)∗n rows are sparse with entries in the main diagonal and the off-diagonal
n rows across. The format of the Jacobian for a system with 2 demographic
groups (n = 2) and 3 infection stages (m = 3) can be seen in (9). All other
entries are 0.

Df =

∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗

(9)

As the actual entries of the Jacobian are too large to fit in one equation, we
write them separately in (10)–(13). Let ı̄ and k̄ correspond to the demographic
group; and ̄ correspond to the infection stage. We label the first n rows by ı̄.
We label all columns for the first n rows by n ∗ (̄ − 1) + k̄. (We remark here
that ̄ = 1 corresponds to the first n columns; ̄ = 2 corresponds to the next n
columns and so on.) Since we only have 2 nonzero diagonals in the remaining
rows we can label them using only k̄ and ̄. The main diagonal elements are
labelled by (n∗ (̄−1)+ k̄, n∗ (̄−1)+ k̄). The off-diagonal elements are labelled
by (n ∗ (̄− 1) + k̄, n ∗ (̄− 2) + k̄).

The terms in the Jacobian are as follows:

• For the main diagonal in the first n rows (1 ≤ ı̄ = k̄ ≤ n and ̄ = 1):

1The model breaks down if 3 is true for all the groups.

9

Df (̄ı, n ∗ (̄− 1) + k̄) =

cı̄ck̄pı̄k̄αı̄βk̄̄
∑n

l=1
clN∗

l

−

n
∑

k=1

m
∑

j=1

cı̄ck̄ckpı̄kαı̄βkjI
∗
kj

(
∑n

l=1
clN∗

l)
2

S∗
ı̄ −

(

γk̄̄ + µk̄̄

)

(10)

• For all other elements in the first n rows (1 ≤ ı̄, k̄ ≤ n, 1 ≤ ̄ ≤ m and
ı̄ 6= n ∗ (̄− 1) + k̄):
Df (̄ı, n ∗ (̄− 1) + k̄) =

cı̄ck̄pı̄k̄αı̄βk̄̄
∑n

l=1
clN∗

l

−

n
∑

k=1

m
∑

j=1

cı̄ck̄ckpı̄kαı̄βkjI
∗
kj

(
∑n

l=1
clN∗

l)
2

S∗
ı̄ (11)

• For the main diagonal in the remaining rows (1 ≤ k̄ ≤ n and 2 ≤ ̄ ≤ m):
Df(n ∗ (̄− 1) + k̄, n ∗ (̄− 1) + k̄) =

−
(

γk̄̄ + µk̄̄

)

(12)

• For the off-diagonal in the remaining rows (1 ≤ k̄ ≤ n and 2 ≤ ̄ ≤ m):
Df(n ∗ (̄− 1) + k̄, n ∗ (̄− 2) + k̄) =

γk̄,̄−1 (13)

If all the eigenvalues of this Jacobian, evaluated at the disease-free equi-
librium point, are in the negative half-plane, then we can conclude that the
disease-free equilibrium is locally asymptotically stable as small changes in the
infected population will exponentially decay to zero.

We are also currently looking into ways of characterising the basic reproduc-
tive number as a distribution over the different demographic groups.

1.1.6 Initialization

An added complication in any model with infected subgroups is the dependence
of the behavior and the timing of the transient solutions of the epidemic model
on the initial distribution of the infected populations among the subgroups.
Hyman et al. show in [2] that even when the total number of infected individuals
is fixed, the timing of the epidemic can be shifted by large amounts of time
by varying the distribution of the initial infected population. This important
observation is often overlooked in simulation studies comparing multi-group
models. We develop a robust, systematic procedure for determining the initial
distribution of the infected population when R0 > 1, based on the progression
of a natural epidemic that sets the timing of different multi-group models and
allows them to be quantitatively compared.

Let fkj = Ikj(0)/I(0). The total initial infected population,

I(0) =

n
∑

k=1

m
∑

j=1

Ikj(0),

10

is fixed and the goal is to prescribe a robust procedure to define the fractions,
fkj , where

∑n
k=1

∑m
j=1

fkj = 1.
For models of the spread of infectious agents such as HIV, which have been

spreading into populations that were originally free of this disease and thus
have an initial background level of zero infections, we propose a procedure for
defining the fkj when R0 > 1 based on the idea that in nature the epidemic
would have spread into the population from only a few infected individuals. The
epidemic then grows from this small seed until by the time a noticeable number
of individuals are infected, a natural balance between the infected subgroups is
reached (thus defining fkj). When R0 > 1, then the numerical pre-initialization

procedure (NPP) is a simple approach to approximating the natural balance
in the population that exists when an epidemic started in the past. In this
procedure we distribute the initial infected population based on what it would
be if a very small initial infected population was introduced in the distant past
and grew to infect a given percentage of the population.

For example, to use the NPP simulation to distribute a 1% initial infection
rate, the pre-initialization simulation is started with a much smaller infected
population, say 0.01% of the population infected, and the equations are inte-
grated until 1% of its population has become infected. This occurs at some time
tP (which depends on the distribution over the infected subgroups of the 0.01%
pre-initialization infected population). At time tP we stop the simulation and
use the evolved distribution of the infected population from the pre-initialization
simulation to define the relative fraction of the initial infected population in each
group for the main simulation. Thus fkj = IP

kj(t
P)/IP (tP), where the super-

script P denotes the solution and ending time of the pre-initialization simulation.
In numerical experiments we observed that the resulting initial conditions are
almost independent of the distribution used in the pre-initialization simulation.

1.2 References

References

[1] Hyman, J. M. & Li, J. (1997). Disease Transmission Models with Biased
Partnership Selection. Applied Numerical Mathematics 24, 379–392.

[2] Hyman, J. M., Li, J. & Stanley, E. A. (1999). The differential infec-
tivity and staged progression models for the transmission of HIV. Mathe-

matical Biosciences 155, 77–109.

[3] Hyman, J. M., Li, J. & Stanley, E. A. (2001). The Initialization and
Sensitivity of Multigroup Models for the Transmission of HIV. J. theor.

Biol. 208, 227–249.

[4] Li, J. (2002). Multi-Group Epidemiological Models.

11

2 Code Description

2.1 Availability

On the website http://www.math.arizona.edu/∼nakul/dsdisp.html, there
is a link to the DSDISP model. This link contains this documentation and the
code.

You can download the code here — for Windows and for Linux. There is
documentation in html and pdf form.

2.2 Conditions for Use

This code is freely distributed for non-commercial use.

• Non-commercial uses: In exchange for its use the authors RE-
QUIRE proper acknowledgement in electronic form (when used
as part of a larger code) and/or in printed form (when used in
projects that lead to any type of publication).

• Commercial uses:

– REQUIRE proper acknowledgement in electronic form (when
used as part of a larger code) and/or in printed form (when
used in projects that lead to any type of publication). Code
modifications REQUIRE the consent of the authors.

– AND REQUIRE permission from the authors.

The code is distributed “as is”. The authors will not assume any legal respon-
sibilities arising from problems with this package.

This code is maintained by the authors. We welcome any suggestions for
improvements and will gingerly and promptly take care of any bugs. Suggestions
for modifications will be given serious consideration.

2.3 Code Documentation

• dsdisp.html (this document).

• dsdisp.pdf (this document).

• Help files on MATLAB scripts and functions.

2.4 To Obtain DSDISP code

2.4.1 Linux/UNIX

Download dsmodel.tar.gz from http://www.math.arizona.edu/∼nakul/dsdisp.html.

2.4.2 Windows

Download dsmodelfiles.zip from http://www.math.arizona.edu/∼nakul/dsdisp.html.

12

2.5 Code Installation

2.5.1 Linux/UNIX

After you have downloaded dsmodel.tar.gz, in the directory where you would
like to create the subdirectory dsmodel/., type the following:

1. gunzip dsmodel.tar.gz

2. tar xvf dsmodel.tar

That should create the directory dsmodel and all its subdirectories.

2.5.2 Windows

After you have downloaded dsmodelfiles.zip, you may use Winzip to ex-
tract the files into a directory of your choice. The extraction will contain the
subdirectory dsmodel.

2.6 System/software Requirements

• There are no system requirements.

• Platforms: any LINUX/UNIX flavor or Windows2. We believe it will also
work on a Macintosh although we have not tested that.

• MATLAB (version 6.1.0.450 (R12.1)). Although we believe the code
should work on some earlier versions of MATLAB3.

3 Code Operation

3.1 Code Structure

The directory dsmodel has five subdirectories:

• code

• input

• output

• docs

• aux.

2We have tested the code for Windows XP.
3There may be problems on earlier versions of MATLAB for Windows because the code

requires a distinction between lowercase letters and capital letters.

13

1. The directory code contains all the scripts and functions that make up this
code. The main driver, dsdisp.m, and plotfig.m are scripts while the rest
of the subroutines are functions. This directory has three subdirectories
for three MATLAB classes. The structure of these classes is explained in
§3.2. The subdirectories are:

• @xtype

• @tautype

• @xtautype.

2. The input directory contains the input files:

• sp.in

• SIfile

• XTfile

• MMfile.

These files are described in §3.4. This directory also contains a number of
subdirectories that contain examples of input files that may be used for
sample runs. See §3.7 for more information on how to use these for sample
runs.

3. The output directory contains the files created by the code where the data
is saved. See §3.6.2 for the details of these files.

4. The docs directory contains this manual in pdf and html format.

5. The aux directory contains auxiliary files such as Maple scripts used in
creating this code.

3.2 Data Structure

The data structure is broken into 4 primary classes:

• Scalars

• Variables dependent on the demographic group (xtype classes).

• Variables dependent on the infection stage (tautype classes).

• Variables depending on both the demographic group and the infection
stage (xtautype classes).

The xtype, tautype and xtautype variables have been created as MATLAB
classes. To see the methods associated with each class, type in
> methods <classname>

For example,
> methods xtype

will display the methods associated with the xtype class. You can then type

14

> help <classname>/<methodname>

for help on a particular method. For example,
> help xtype/printx

will show the help file for printing the values of an xtype class. We explain the
format of each class in some detail below.

1. The xtype classes store data or parameters that are dependent on the
demographic group. Examples of these include the susceptibility of the
susceptible population, the inward migration rate and the susceptible and
recovered population. To enable these variables to represent either abso-
lute numbers or densities we represent the data in midpoint and endpoint
format. The values at the midpoint can be used to represent the actual
numbers or they can be assumed to represent densities and extrapolated
to give values for the endpoints. We will use x to represent the demo-
graphic divisions. If, for example, we wish to use age as our demographic
category, the values of x would represent the divisions of the different age
groups. The bounds of the age bins would serve as the endpoints and
these can then be used to find the midpoints of the age bins. An example
of dividing a population into 6 age bins is (0, 5], (5, 12], (12, 18], (18, 22],
(22, 55], (55, 100]. The corresponding x endpoints then are 0, 5, 12, 18,
22, 55 and 100. The corresponding midpoints are 2.5, 8.5, 15, 20, 38.5 and
77.5. The current version of the code only accepts endpoints for x and in-
terpolates these to find the midpoints. Even if the demographic category
is non-numeric (eg. gender or occupation), the code will still require x
endpoints. For 4 demographic groups, the endpoints could simply be 1, 2,
3, 4 and 5. Note that the number of x midpoints is equal to the number
of demographic groups and the number of x endpoints is one greater than
the number of groups.

The xtype classes store these endpoint and midpoint values for x and
store corresponding values for the variable. The code currently only deals
with actual numbers (not densities) so the values of the variable at the
midpoints corresponds to the actual number of that variable for that de-
mographic group. In the above example of age groups, if the value for
the first midpoint (2.5) for the recovered population is 240, then we can
interpret that as 240 people in the recovered class between the ages of
0 and 5. The code now only accepts input data for the variable at the
midpoints. It then extrapolates this to find the values of the variable at
the endpoints. In this version of the code, we do not use the data at the
endpoints. (In future versions of the code, we may also accept data at the
endpoints and may work with distribution densities too.)

2. The structure of the tautype classes is similar to that of the xtype classes,
except the variables are now a function of the infection stage, τ , instead
of the demographic group, x. There are no significant differences between
these two classes except that the number of midpoints now is equal to
the number of infection stages; and the τ endpoints represent the time

15

frames of the different stages of the disease. We do not currently have any
variables that are only dependent on the infection stage but we use this
class of variables to create xtautype classes.

3. The xtautype store data or parameters that are dependent on both the
demographic group and the infection stage. Examples of these include
the infectivity of the people in the different infected subgroups and the
number of infected people in each of these subgroups. They are created
by combining the xtype and tautype classes, using the relative values of
the different demographic groups and the infection stages. The sum of
the data for the variable for both of these is then normalized to 1 and
the two are raked together to create an xtautype class. The data is then
multiplied by the value of the integral (specified in the input files — see
§3.4.1).
Raking: We write the xtype data as a normalized (n× 1) vector and the
tautype data as a normalized (1×m) vector. We then multiply the x data
by the τ data to create a (n ×m) matrix — the data for the xtautype

variable. This matrix is then multiplied by the value of the integral.

3.3 Initial Conditions

The initial conditions are read in through input files. Nonzero values can only
be specified for the initial susceptible and infected populations. The initial
recovered population is always set to 0.

The model is run through an initialization procedure as described in §1.1.6.
The pre-initialization infected population is read through input files as defined
in §3.4. The code is then run until some threshold value of infecteds, IP , is
reached, at some time, tP 4.

The time is then reset to 0 and the code run again with initial conditions
defined by the state of the system at time tP . The threshold value can be either
set as the actual number of infecteds or as a percentage of total pre-initialization

population. See §3.4 for details on how to set this threshold value.
At the time the threshold value is reached, the populations of all groups, Si,

Iij and Ri, and the time are stored in Sop, Iop, Rop and tronep, respectively.
Note that Sop, Iop and Rop are stored as classes. The time rate of change of
the populations are stored in Stop, Itop and Rtop. These are also stored as
classes. The the time the threshold is reached, tP , is also stored in an output
file as described in §3.6.2.

There is also a maximum set for initialization time, tM . If the code does not
reach the threshold value for the the infected population by tM , it uses values
in the different groups at time tM as the new initial conditions, resets the time
and continues. The code does display a warning.

If the pre-initialization infected population specified in the input files is
greater than the given threshold, IP , the code displays a warning, and does not

4The actual time when the infected population reaches the threshold value is calculated

by interpolating the two closest values from the output of MATLAB’s ode45 command.

16

follow the pre-initialization procedure. It simply uses the given pre-initialization
values as the initial conditions.

3.4 Input Files

3.4.1 sp.in

The main input file is sp.in contained in the directory dsmodel/input/. The
parameters in this file is order sensitive. Changing the order of the parameters
will result in an error that may or may not be displayed on the screen. The data
from this file is read using the command textread. All variables that are stated
to functions of x must have as many elements as the number of demographic
groups. Similarly, all variables stated to be functions of τ must have as many
elements as the number of infection stages5. The input parameters are:

FlagData: A flag for the format of SIfile. Can be either ‘FullMP’,
‘FullEP’, ‘SparseMP’ or ‘SparseEP’. Class: String. See
§3.4.3 for details.

SIfile: The name of the file where the initial population data is
stored. This contains the susceptible and infected popula-
tions used for the pre-initialization procedure. The recov-
ered population is automatically set to 0. Class: String.
See §3.4.3 for a description of the format of this file. Note
that if the file is in the directory dsmodel/input/., the
name will need to contain ‘../input/.’ because the code
is run from the directory dsmodel/code/..

XTfile: The name of the file where the data for the x and τ variables
is stored. Class: String. See §3.4.2 for details of the format
of this file.

MMflag: A flag that determines the format of MMfile. This can
be either ‘MixingMatrix’, ‘MixingMatrixPP’ or ‘QCData’.
Class: String. See §3.4.4 for more details.

MMfile: The name of the file where the mixing matrix is stored.
Class: String. See §3.4.4 for details of the format of this
file.

Initflag: This is a string that can either be ‘Percent’ or ‘Number’.
This is used to determine the threshold value for the total
infected population size at which the code re-initializes. If
‘Percent’ is selected, then Initpc is used; if ‘Number’ is
selected, then Init pop is used. Class: String.

Init pop: IP . The number of infected people at which to re-initialize
time when Initflag is set to ‘Number’. Class: Scalar.
Units: People.

5It may be easiest to follow the format specified in the sample input files for sp.in as

described in §3.7

17

Initpc: When Initflag is set to ‘Percent’, the number of infected
people at which time is re-initialized is this percent of the
pre-initialization population (the total population speci-
fied in SIfile). Class: Scalar. Units: Percentage.

inittime: tM . The maximum time to run until re-initialization. If
the infected population does not reach the threshold by
this time, the code displays a warning and continues. This
value needs to be a multiple of dtsave. Class: Scalar.
Units: Time.

tfinal: The final time (after re-initialization) to integrate the sys-
tem to. This value needs to be a multiple of dtsave. Class:
Scalar. Units: Time.

dtsave: The time interval at which data is saved. This value needs
to be a factor of tfinal and inittime. If it is not a factor
of either one of the two, the code will run, but will display a
warning. A large value of dtsave will result in faster runs
but coarser plots and coarsely saved data, while a small
value will result in slower runs but finer plots and larger
data sets. Class: Scalar. Units: Time.
Note: The value of dtsave will not affect the accuracy of
the actual integration.

IMR(x): Λi. The inward migration rate for demographic group i.
Class: xtype. Units: People/Time.

mud(x): µid. The natural death rate for demographic group i. Class:
xtype. Units: Time−1.

mum(x): µim. The natural migration rate out of the population for
demographic group i. Class: xtype. Units: Time−1.

alpha(x): αi ∈ [0, 1]. The susceptibility of a person in Si. Class:
xtype. Units: 1.

18

[Beta]: Note: [Beta] is not present in the
input file.
The next 3 input parameters relate to
this quantity. βkj ∈ [0, 1]. The infectiv-
ity of a person in Ikj . Class: xtautype.
Units: 1.

beta(x): βkj(k). The relative infectivity of each
demographic group. The sum of these
parameters will be normalized to 1.

beta(tau): βkj(j). The relative infectivity of each
infection stage. The sum of these pa-
rameters will be normalized to 1.

beta (Value of Integral): After normalized beta(x) and normal-
ized beta(tau) have been raked, the
resulting matrix will be multiplied by
beta (Value of Integral). This pa-
rameter is equal to

∑n
k=1

∑m
j=1

βkj .
Care must be taken when this param-
eter is chosen to ensure that βkj ≤
1 ∀ k, j. The code will not return a
warning if this condition is violated.

[Gamma]: Note: [Gamma] is not present in
the input file.
The next 3 input parameters relate to
this quantity. γij . The rate of disease
progression for a person in demographic
group i and infection stage j. Class:
xtautype. Units: Time−1.

gamma(x): The relative rates of disease progression
for each demographic group. The sum
of these parameters will be normalized
to 1.

gamma(tau): The relative rates of disease progression
for each infection stage. The sum of
these parameters will be normalized to
1.

gamma (Value of Integral): After normalized gamma(x) and nor-
malized gamma(tau) have been raked,
the resulting matrix will be multiplied
by gamma (Value of Integral). This
parameter is equal to

∑n
i=1

∑m
j=1

γij .

19

[DeltaI]: Note: [DeltaI] is not present in the
input file.
The next 3 input parameters relate to
this quantity. δij . The disease-induced
death rate for demographic group i in
infectious stage j. Class: xtautype.
Units: Time−1.

deltaI(x): This is the relative death rate for each
demographic group. The sum of these
parameters will be normalized to 1. If
they are all 0, no normalization will
take place.

deltaI(tau): This is the relative death rate for each
infection stage. The sum of these pa-
rameters will be normalized to 1. If
they are all 0, no normalization will
take place.

deltaI (Value of Integral): After normalized deltaI(x) and
normalized deltaI(tau) have been
raked, the resulting matrix will be
multiplied by deltaI (Value of

Integral). This parameter is equal to
∑n

i=1

∑m
j=1

δij .

20

plotfigures: Gives different options for plotting the results. §3.6.1
has more details. Class: Scalar.
0: Prints no plots.
1: Prints out separate plots for each demographic

group. Each plot will show the susceptible popu-
lation, the population in each infected stage, and
the recovered population in that group.

2: Prints out separate plots for each demographic
group. Each plot will have the susceptible popu-
lation, the total infected population in that demo-
graphic group (sums the infected population over
the different infection stages) and the recovered
population.

3: Prints out separate plots for each demographic
group. Each plot will have the relative fraction
of the population of each infection stage out of
the total infected population in that demographic
group.

4: Prints out one graph that has the total suscepti-
ble population, the total infected population and
the total recovered population.

killimages: Flag to command MATLAB to kill plots before run is
over. Class: Scalar.
0: Leaves the plots on the screen. You will need to

kill them manually .
1: Hitting any key will kill the plots one by one.

printdata: Flag to print data to screen. If printdata is 0, no
data will be printed to screen. If it is 1, the code
will print to screen, the total population, the total in-
fected population, the population in each subgroup and
their time rate of change. In the display, where n is
the number of demographic groups and m is the num-
ber of infection stages, y(1) . . . y(n) will correspond to
S1 . . . Sn; y(n+1) . . . y(2n) will correspond to I11 . . . In1;
y(2n+ 1) . . . y(3n) will correspond to I12 . . . In2; and so
on, with y((m×n)+1) . . . y((m+1)×n) corresponding
to I1m . . . Inm and y(((m+1)×n)+1) . . . y((m+2)×n)
corresponding to R1 . . . Rn. yt(i) will correspond to the
time derivative of y(i). Class: Scalar.

PlotJac: Flag that tells the code to plot eigenvalues of the Jaco-
bian (if the disease-free equilibrium exists). If PlotJac
is set to 1, the code will plot the real part of the eigen-
values of the Jacobian of the equations for the infected
group at the disease-free equilibrium. If it is set to 0,
these plots will not be printed out. The Jacobian will
be calculated, regardless. Class: Scalar.

21

3.4.2 XTfile

This file contains the data for the x and τ endpoints — which determine the
number of demographic groups and infection stages. The file needs to be in
ASCII format. The file is read using load. It should contain one column vector
with the first entry specifying the number of x endpoints (ie. one greater than
the number of demographic groups desired). If the first entry is n, the next
n entries should be the x endpoints and there will be (n − 1) demographic
groups. The remaining entries are the τ endpoints. All endpoints should be in
strictly ascending order. If the first entry does not give the correct number of
x endpoints, there will be an error which may or may not be reported by the
code. For example, the XTfile containing,
4

0

8

25

100

1

2

3

4

5

would create 3 demographic groups divided in the intervals (0, 8], (8, 25] and
(25, 100]; and 4 infection stages divided into the intervals (1, 2], (2, 3], (3, 4]
and (4, 5].

This information is used to create xtype, tautype and xtautype classes for
the parameters and the variables. The units of x can be of your choosing or x
may be unitless. The units of τ should be time.

3.4.3 SIfile

This file is used to create an xtype class for the initial susceptible population;
and an xtautype class for the initial infected population. (An xtype class is
also created for the initial recovered population but the number of people there
is automatically set to zero.) The units for these classes are people.

For FlagData set to ‘FullMP’, SIfile needs to be in ASCII format. The file
is read using load. The first column is the number of people in the susceptible
section of each demographic group. The second column is the the number of
people in the first infection stage in each demographic group. The third column
is the number of people in the second infection stage in each demographic group
and so on.

The first row corresponds to the people in the first demographic group, the
second row to the people in the second demographic group and so on.

The number of rows must be the same as the number of demographic groups
specified in XTfile, while the number of columns must be 1 more than the
number of infection stages specified in XTfile (the first column contains the

22

susceptible group).
For example, for SIfile containing the following information,

100 0 5 0 0

500 0 0 3 2

300 1 8 0 0

the initial conditions would be

S1 = 100 I11 = 0 I12 = 5 I13 = 0 I14 = 0 R1 = 0
S2 = 500 I21 = 0 I22 = 0 I23 = 3 I24 = 2 R2 = 0
S3 = 300 I31 = 1 I32 = 8 I33 = 0 I34 = 0 R3 = 0

with 3 demographic groups and 4 infection stages.
Note: The number of demographic groups and infection stages specified in
SIfile must be consistent with the data in XTfile.

For FlagData set to ‘FullEP’, SIfile needs to be in the same format as the
‘FullMP’, but the input data is in endpoint format (so there will be 1 extra row
and 1 extra column). The actual interpolated values will also depend on the
endpoints specified in XTfile.

For FlagData set to ‘SparseMP’, SIfile needs to be in ASCII format. It is
read using fscanf. The first n entries, where n is the number of demographic
groups specified in XTfile, need to be the initial susceptible population in each
demographic group. The next entries for the number of infected people in each
infected subgroup should come in groups of 3. Out of each triplet, the first entry
is the demographic group, the second entry is the infection stage and the third
entry is the number of infected people. The number of infected people in all
demographic groups and infection stages that are not specified by this file are
set to 0.

For example, for SIfile containing,
100

500

300

1 2 5

2 3 3

2 4 2

3 1 1

3 2 8

the initial conditions would be

S1 = 100 I11 = 0 I12 = 5 I13 = 0 I14 = 0 R1 = 0
S2 = 500 I21 = 0 I22 = 0 I23 = 3 I24 = 2 R2 = 0
S3 = 300 I31 = 1 I32 = 8 I33 = 0 I34 = 0 R3 = 0

with 3 demographic groups and 4 infection stages.
Note: The number of demographic groups and infection stages specified in
SIfile must be consistent with the data in XTfile.

For FlagData set to ‘SparseEP’, the file needs to be in the same format as
the ‘SparseMP’, but the input data is in endpoint format. There will need to be

23

one more entry for the susceptible population. The entries for the infected pop-
ulation will also be for the endpoint values so the actual interpolated midpoint
values will also depend on the endpoints specified in XTfile.

3.4.4 MMfile

This file determines the parameters that describe the mixing between the dif-
ferent demographic groups (either qik or pik and ci). The format of this file is
determined by MMflag.

If MMflag is set to ‘QCData’, then the code directly reads in the q and c
data, calculates p and proceeds as described in §1.1.4. This file is read using
the load command, and should be in ASCII format. It should contain n rows
and (n+ 1) columns. The first column corresponds to c while the remaining n
columns correspond to q. The file should be of the format:
c1 q11 q12 · · · q1n

c2 q21 q22 · · · q2n

...
...

...
. . .

...
cn qn1 qn2 · · · qnn.
Note: The number of demographic groups in this file must be equal to the
number specified in XTfile.

If MMflag is set to ‘MixingMatrix’, the code reads in the total number of
contacts between the different groups per unit time and then calculates c and
p. This file is read using the load command and should be in ASCII format.
The file should contain an n× n symmetric matrix where n is the number of
demographic groups (should be equal to the number defined in XTfile). This
matrix should contain the total number of contacts (by all people) between the
different demographic groups, per unit time. The units of M are (Number of
Contacts)/Time. The unit of time here must be consistent with the unit of time
used in sp.in for the other parameters that have time in their dimension.

This option allows for easy interfacing between this code and TRANSIMS6.
Demographic data can be collected from TRANSIMS and stored in a file in the
above format which can then be read by the code. However, care must be taken
to ensure that the number of people used to create the mixing matrix must
be the same as the total initial population. Otherwise, the average number of
contacts per person that this code calculates will be inconsistent with the data
in the mixing matrix.

An example of a valid MMfile for 3 demographic groups with MMflag =
’MixingMatrix’ is
67 45 12

45 377 128

12 128 35.

Here the people in demographic group 1 have a total of 67 contacts within
their own group, 45 contacts with the people in demographic group 2 and 12
contacts with the people in demographic group 3, per unit time. The people

6An agent-based model of a virtual city that describes movement and interaction of people.

24

in demographic group 2 have a total of 45 contacts with group 1, 377 contacts
amongst themselves and 128 contacts with group 3, per unit time. The people
in group 3 have a total of 12 contacts with group 1, 128 contacts with people in
group 2 and 35 amongst themselves, per unit time.

We describe the calculation of the parameters, p and c below.
Let Mik be the total number of contacts between group i and group k per

unit time, read from the input file. (This is the same quantity as Tik in §1.1.4
but we use M here to denote an input read from a file.)

We define ci, the preferred number of contacts per unit time of one person
in group i, as the total number of contacts made by group i divided by the total
initial population of group i in (14).

ci =

∑n
k=1

Mik

Ni(0)
. (14)

We then define the preference for a contact between group i and group k using
the definition for the total contacts (6) with the initial population data in (15).

pik = Mik

∑n
l=1

clNl(0)

ciNi(0) ckNk(0)
. (15)

Note that now, pik is no longer restricted to being less than or equal to 1
and must be interpreted as a preference, not a probability. We do not solve for
qik. These parameters no longer have the same interpretation as in [1], but this
method serves as an efficient and consistent way of scaling the contacts between
the demographic groups, while satisfying the balance constraints.

If MMflag is set to‘MixingMatrixPP’, the code reads in the average number
of contacts per person per unit time between the different groups and then
calculates c and p. This file is read using the load command and should be
in ASCII format. The file should contain an n × n matrix (no longer needs to
be symmetric) where n is the number of demographic groups (should be equal
to the number defined in XTfile). This matrix should contain the average
number of contacts per person between the different demographic groups, per
unit time. The units of M are (Number of Contacts)/(Person·Time). The unit
of time here must be consistent with the unit of time used in sp.in for the other
parameters that have time in their dimension.
Note: Although this matrix does not need to be symmetric, the matrix of the
total number of contacts between the different demographic groups does need
to be symmetric (because the total number of contacts between group i and
group k must be equal to the total number of contacts between group k and
group i). Thus, when each row of the matrix in MMfile is multiplied by the
total population of that group, the resulting matrix must be symmetric.

An example of a valid MMfile for 3 demographic groups with population sizes
N1(0) = 100, N2(0) = 50 and N3(0) = 200 for MMflag = ’MixingMatrixPP’ is
7 5 2

10 7 8

1 2 5.

25

Here, each person in group 1 has, on average, 7 contacts with other people in
group 1, 5 contacts with people in group 2 and 2 contacts with people in group
3. Similarly, each person in group 2 has, on average, 10 contacts with people in
group 1, 7 contacts with other people in group 2 and 8 contacts with people in
group 3. And each person in group 3 has, on average, 1 contacts with people in
group 1, 2 contacts with people in group 2 and 5 contacts with other people in
group 3. The total mixing matrix for this input file is

M =

700 500 200
500 350 400
200 400 1000

 .

The code calculates this total mixing matrix and then calculates c and p as it
would if MMflag were set to ‘MixingMatrix’.
Note: If the calculated total mixing matrix is not symmetric, the code will
return an error and stop.

3.5 Algorithm

The ODE’s are integrated using ode45. This method uses variable order Runge-
Kutta (4 and 5) with a relative tolerance of 10−6 and an absolute tolerance of
10−11. These may be varied, if desired, by changing the values of Eps and
AbsEps, respectively, in dsdisp.m.

3.6 Output

The code has two forms of output:

• Some results and plots can be printed to the screen.

• Data is saved to files in the output directory.

3.6.1 Displayed Results

There are numerous flags in sp.in that allow you to print various results to the
screen. We will describe these in some detail below.

If printdata is set to 1, time, the populations of the different subgroups,
their rate of change, the total population and the total infected population, at
intervals of dtsave, will be displayed to the screen. On the screen, y(1) . . . y(n)
correspond to S1 . . . Sn; y(n + 1) . . . y(2n) correspond to I11 . . . In1; y(2n +
1) . . . y(3n) correspond to I12 . . . In2; and so on, with y((m× n) + 1) . . . y((m+
1)×n) corresponding to I1m . . . Inm and y(((m+1)×n) + 1) . . . y((m+2)×n)
corresponding to R1 . . . Rn. The terms yt(i) correspond to the time derivative
of y(i). Although this instant display of the results may be useful when setting
up parameters, it will slow the code down.

Depending on the value of plotfigures, different plots may be displayed
as shown in Table 3. There is currently no option to show the relative impact
on disease spread of each infectious subgroup. We have yet to decide on the

26

final form of the expression for the relative impact, but we hope to add it to the
model soon. The data is plotted from time equals 0 (after re-initialization —
see §3.3 for more details) to the time specified in tfinal. The resolution of the
plots is controlled by dtsave. The smaller dtsave is, the better the resolution.
The plots are not saved by the code. If you do wish to save them, you will need
to save them manually.

If killimages is set to 1, the code will wait for user-input to kill each
figure. (Depending on the value of plotfigures there may be as many figures
as demographic groups.) The figures will be killed sequentially from the first
demographic group to the last. If you wish to view the plots while continuing
to use MATLAB, set killimages to 0. You will then need to kill the figures
manually.

0: Prints no plots.
1: Prints out separate plots for each demographic group. Each plot will show the

susceptible population, the population in each infected stage, and the recovered
population for that demographic group. Each plot has different line colors for
the susceptible, infected and recovered population, but the same colour for the
different infected subgroups; and the same linestyle for all curves. Also, there is
no legend on these plots. The labels of the different subgroups are shown using
the text command. The label is placed slightly above the maximum of that curve
— so if there are a number of monotonically increasing curves, all their text labels
will be placed on the right of the figure. This layout may not necessarily be
visually pleasing. If you wish to show these data in a professional setting, I would
recommend writing your own script to plot the data. You may copy and paste
code from plotfig.m, if it helps.

2: Prints out separate plots for each demographic group. Each plot will have the
susceptible population, the total infected population in that demographic group
and the recovered population in that group. The infected population is summed
over the different infection stages for each demographic group. These plots do have
different linestyles and line colors. They have a legend and the lines are drawn 2pt
thick.

3: Prints out separate plots for each demographic group . Each plot will have the
relative fraction of the population of each infection stage out of the total infected
population in that demographic group. Again, each plot has the same line colors
and linestyles. There is no legend and the curves are labeled by text which appears
slightly above the maximum value of that curve. It may again be necessary to write
your own plotting routines to display these graphs in a more visually pleasing
manner.

4: Prints out one graph that has the total susceptible population, the total infected
population and the total recovered population of the whole system. This plot does
have different linestyles and colors. There is a legend and the lines are drawn 2pt
thick.

Table 3: The different options for plotting data for values of plotfigures

27

If plotJac is set to 1, the real part of the eigenvalues of the Jacobian at the
disease-free equilibrium will be plotted on the screen. The x-axis is simply a
labelling of the eigenvalues while the y-axis is the real part of the eigenvalues.
The different eigenvalues are shown by crosses.

3.6.2 Saved Results

There are currently three files saved by the code. They contain the population of
each subgroup at different times, the time to re-initialization and the Jacobian
of the linearized system around the disease-free equilibrium. The files saved are:

• ytData.dat

• Time Init.dat

• JacTE.dat

These are all saved in the output directory. If you wish to use different names
for these files you can change the values of ytfile, tinitfile and jacfile,
respectively, in dsdisp.m.

1. ytData.dat:
This file contains the values of time, the population of the subgroups and
their rates of change, at intervals of dtsave, from time t = 0 (after re-
initialization) to tfinal. These are stored in ASCII format in ytData.dat

using the subroutine saveyt.m. The first column of ytData.dat contains
the values of time. Values in columns 2 through (n+ 1) contain data for
groups S1 through Sn. The next n columns contain data for subgroups
I11 through In1. The n columns after that contain data for I12 through
In2 and so on. The last n columns contain data for R1 through Rn. The
first row corresponds to time 0. The second row to time dtsave, the third
row to time 2×dtsave and so on.

You may use loadsirp.m to retrieve the data from ytData.dat. The sub-
routine loadsirp.m takes in 4 input parameters. The first parameter is
the filename where the data is stored. The second parameter is a flag that
determines the format of this file. This can be either ‘ASCII’ or ‘MAT’.
The third parameter is the number of demographic groups and the fourth
parameter is the number of infection stages in the model. For retriev-
ing data saved by dsdisp.m, use ‘ytData.dat’ for the first parameter,
‘ASCII’ for the second parameter and then enter the number of demo-
graphic groups and infection stages for the third and fourth parameters.

The function loadsirp.m has four output parameters. The first param-
eter, T is a column vector of time values from 0 to tfinal at intervals
of dtsave. The second parameter, SP, is a matrix containing the infor-
mation on the susceptible population. The first column corresponds to
time t = 0; the second to time t =dtsave and so on — with each column

28

corresponding to a value of time defined in T. The first row contains the
values of S1 at each of these times, the second row the values of S2 and
so on, with the last row containing the values of Sn. The third output
parameter, IP, contains the infected population values. This is a 3D array
where each page corresponds to time defined in T. Each row corresponds
to the demographic group and each column corresponds to the infection
stage. The fourth output parameter, RP is the recovered population and
has a similar structure to SP.

Typing
> help loadsirp

in MATLAB in the directory dsmodel/code will also produce this infor-
mation on the format of the output.

2. Time Init.dat:
This file contains the time at which the code re-initializes the population
as described in §1.1.6. The file is saved in ASCII format and contains only
a scalar.

3. JacTE.dat:
This file contains the Jacobian of the system (of only the infecteds) at the
disease-free equilibrium. The Jacobian is calculated as described in §1.1.5.
This file is also stored in ASCII format. It contains one matrix with all
the terms of the Jacobian.

3.7 Sample Run

To run this code, open MATLAB and enter the directory, dsmodel/code. Then,
type in
> dsdisp.

For sample runs, some input files have already been created. In the directory,
dsmodel/input there are three subdirectories:

• AIDS4G

• AIDSDISP

• AIDSSP.

To run any of these models, copy all four input files from that subdirectory
into dsmodel/input and from dsmodel/code in MATLAB run dsdisp. This
will run the code with the parameters set up for that model.

To run the code with your own parameters, it may also help to start with
sp.in from one of these models and change that as you wish to keep the format
of that file.

29

3.8 User-Defined Equations

To allow the user to expand this model to include more dynamics, such as
behaviour change or migration between demographic groups, we have included
functions that can be changed by the user to modify the system of equations.

The system variables, S, I and R are stored as one large column vector, y.
The format of y is the same as that in §3.6.1. The first n terms, y(1) . . . y(n),
correspond to S1 . . . Sn. The next n terms, y(n + 1) . . . y(2n), correspond to
I11 . . . In1; y(2n+ 1) . . . y(3n) correspond to I12 . . . In2; and so on, with y((m×
n) + 1) . . . y((m + 1) × n) corresponding to I1m . . . Inm and y(((m + 1) × n) +
1) . . . y((m+ 2)× n) corresponding to R1 . . . Rn.

To change the derivatives, you may add or subtract terms in fuser.m. This
subroutine returns a column vector (with the same format as y) that is added
to the system of equations (1). Let us call the output vector of fuser.m, u.
Adding a term to u(1) will add that term to Ṡ1; adding it to u(n) will add it to
Ṡn; u(n+ 1) to ˙I11 and so on.

For example, to convert the model to an SIRS model (16), with a recovery
rate, ρ, fuser.m would need to return the vector (17). However, the user would
need to input the new parameter, ρ, directly in fuser.m

dSi

dt
= Λi − (µiS + λi(t))Si + ρiRi (16a)

dIi1

dt
= λi(t)Si − (γi1 + µi1)Ii1 (16b)

dIij

dt
= γi,j−1Ii,j−1 − (γij + µij)Iij for 2 ≤ j ≤ m (16c)

dRi

dt
= γimIim − (ρi + µiR)Ri (16d)

for 1 ≤ i ≤ n.

30

u =

ρ1R1

ρ2R2

...
ρnRn

0
...
0
...
...
0
...
0

−ρ1R1

−ρ2R2

...
−ρnRn

(17)

Also, any changes to fuser.m, will require corresponding changes to jacuserTE.m
to keep the equations consistent. The output of jacuserTE.m is a matrix, fol-
lowing the format of §1.1.5. This output is added to the jacobian calculated
in getjacobianTE.m. In the above example, as no changes are made to the
equations for I, the jacobian is unchanged.

3.9 Killing Execution

To kill execution at any time, type in Ctrl + c. As some data is saved into
output files at the end of the run, in most cases, not all the data will be saved.
Some variables in MATLAB’s working memory may be changed.

4 Bugs and Modifications

Feel free to contact us:

• nakul@math.arizona.edu

• restrepo@math.arizona.edu.

31

